Download LearnGraduation Android App Now Get now!

BSC Physics Syllabus || SEMESTER 6 || OFFICIAL SYLLABUS BASED ON [Under Choice Based Credit System]

BSC Physics Syllabus || SEMESTER 6 || OFFICIAL SYLLABUS || du bsc physics syllabus ||bsc physics full syllabus

 SEMESTER VI

 PHYSICS-C XIII: SOLID STATE PHYSICS 

(Credits: Theory-04) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type:

 4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6)

 Crystal geometry:

 Crystal lattice; crystal planes and Miller indices, unit cells. Typical crystal structures;. Symmetry elements; rotation, inversion and reflection, point groups and crystal classes,.

 Crystallography:

 Diffraction of X-rays by a crystal lattice. Laue's formulation of X-ray diffraction; reciprocal lattice, Bragg’s equation, , Laue spots. 

Types of binding in solids (Qualitative idea only): 

Covalent binding and its origin, Ionic binding, energy of binding, transition between covalent and ionic binding, metallic binding, Van der Waals binding, hydrogen bond. 

Lattice Vibrations: 

Dynamics of a chain of atoms, chain of two types of atoms, optical and acoustic modes, interaction of light with ionic crystals, Einstein's and Debye's theories of specific heats of solids.

 Conduction in metals: 

Drude's theory, Electrical conductivity, Hall effect and magnetoresistance, thermal conductivity of metals, thermal properties of free-electron gas, Sommerfeld's theory of conduction in metals.

 Elementary band theory: 

Periodic potential and Bloach theorem, Kroning- Penny model, band gap, Effective mass, Band structure of metals, insulators and semiconductors. Conductivity of Semiconductor, mobility.

 Superconductivity: 

Occurrence, Critical temperature and critical magnetic field, Meissner effect, Superconductivity- Type I, Type II.

 Reference Books: 

• Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.                       Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India

• Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill

• Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning 

• Solid-state Physics, H. Ibach and H. Luth, 2009, Springer 

• Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India 

PHYSICS LAB- LAB C XIII (2 Credits)                         FM: 25 

1. To determine the Hall coefficient of a semiconductor sample.

2. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room            temperature to 1500 C) and to determine its band gap.

 3. To measure the Dielectric Constant of a dielectric Materials with frequency 

4. To determine the refractive index of a dielectric layer using SPR 

5. To determine the value of e/m by using a Bar magnet. 

PHYSICS-C XIV: STATISTICAL MECHANICS

 (Credits: Theory-04) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type: 

4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6)

 Classical Statistics:

 Macrostate & Microstate, Elementary Concept of Ensemble, Phase Space, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Gibbs Paradox, Sackur Tetrode equation,Law of Equipartition of Energy 

Classical Theory of Radiation: 

Properties of Thermal Radiation. Blackbody Radiation. Kirchhoff’s law.Stefan-Boltzmann law:. Wien’s Displacement law. Wien’s Distribution Law. Rayleigh-Jean’s Law.

 Bose-Einstein Statistics: 

B-E distribution law, Thermodynamic functions of a Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He . 

Fermi-Dirac Statistics: 

Fermi-Dirac Distribution Law, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals,

 Reference Books:

 • Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.

 • Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill

 • Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall 

• Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L.       Salinger, 1986, Narosa. 

• Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer 

• An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ.          Pres

 PHYSICS LAB- LAB C XIV (2 Credits)    FM: 25

 Use C/C++/Scilab for solving the problems based on Statistical Mechanics like 

1. Plot Planck’s law for Black Body radiation and compare it with Wein’s Law and RaleighJeans Law at high temperature (room temperature) and low temperature. 

2. Plot Specific Heat of Solids by comparing 

     (a) Dulong-Petit law, 

     (b) Einstein distribution function, 

     (c) Debye distribution function for high temperature (room temperature) and low temperature and                 compare them for these two cases 

3. Plot Maxwell-Boltzmann distribution function versus temperature.

 4. Plot Fermi-Dirac distribution function versus temperature.

 5. Plot Bose-Einstein distribution function versus temperature. 

 DISCIPLINE SPECIFIC ELECTIVE 

----------------------------------------------------------------------------------------------------- 

PHYSICS-DSE I: MATHEMATICAL PHYSICS-III

 (Credits: Theory-04) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type:

 4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6)

 Complex Analysis:

 Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles, order of singularity, Integration of a function of a complex variable. Cauchy's Inequality. Cauchy’s Integral formula. Simply and multiply connected region. Laurent and Taylor’s expansion. Residues and Residue Theorem. Application in solving Definite Integrals. 

Integrals Transforms:

 Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.).

 Laplace Transforms:

 Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Convolution Theorem. Inverse LT. Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits. 

Reference Books: 

• Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press 

• Mathematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications 

• Complex Variables, A.S.Fokas & M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press

 • Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill

 • First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett. 

• Mathematical Physics, B. D. Gupta. 

• Mathematical Physics, B. S. Rajput.

 • Mathematical Physics, H. K. Dass. 

• Mathematical methods in Physics, E. Butkov.

 • Mathematical methods in Physics, Potter and Goldberg. 

 PHYSICS LAB- LAB DSE I (2 Credits)     FM: 25 

Scilab based simulations experiments based on Mathematical Physics problems like 

physics semester6

 5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).

 6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program. 

 …………………………………………………………………………………………………..

 PHYSICS-DSE II: NUCLEAR AND PARTICLE PHYSICS 

(Credits: Theory-04) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type: 

4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6) ………………………………………………………………………………………………….. 

Structure on nucleus; 

discovery of the nucleus, composition. Basic properties; charge, mass, size, spin, magnetic moment, electric quadrupole moment, binding energy, binding energy per necleon and its observed variation with mass number of the nucleus, semi empirical mass formulae, explanation of the binding energy curve. Liquid drop model of the nucleus.

 Nuclear forces: 

two-nucleon system, deuteron problem, binding energy, nuclear potential well, pp and pn scattering experiments, meson theory of nuclear forces, e.g. Bartlett, Heisenberg, Majorana forces and potentials, mirror nuclei, nuclear energy levels, nuclear gamma rays. 

Radioactivity:

 decay constant, half-life, mean life; Geiger-Nuttal law, Successive disintegration, secular and transient equilibrium, neutrino and antineutrino. basics of α-decay processes, theory of αemission, 

Gamow factor Detectors for charged particles; 

Ion chamber, Geiger-Muller counter, resolving time, Scintillation counter. 

Accelerators: 

Need for accelerators; cyclotron, synchrocyclotron, variable energy cyclotron, phase stability. 

Nuclear reactions;

 Rutherford's experiments of nuclear transmutation, conservation theorems, Q-value, threshold energy, cross-section of nuclear reactions. Concept of compound and direct Reaction, resonance reaction,

 Artificial radioactivity: 

Nuclear fission, Neutron reactions, Fermi and transuranic elements, chain reaction, criticality, moderators. 

Particle physics: 

Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Concept of quark model.

 Reference Books: 

• Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008)

• Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998). 

• Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004). 

• Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press 

• Introduction to Elementary Particles, D. Griffith, John Wiley & Sons 

• Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi

 • Basic ideas and concepts in Nuclear Physics - An Introductory Approach by

PHYSICS LAB- LAB DSE II (2 Credits)    FM: 25 

1. Demonstration of presence of Static Electricity 

2. Demonstration of phenomenon of Corona Discharge 

3. To determine the plateau and optimal operating voltage of a Geiger-Müller 

4. To determining the resolving (dead) time τ of a Geiger – Muller counter 

5. DETERMINING THE EFFICIENCY OF A GEIGER-MULLER COUNTER

 6. DETERMINING THE HALF LIFE OF A RADIO ISOTOPE USING GEIGER – MULLER COUNTER 

7. Experiment with Alpha Scintillation Counter

 PHYSICS-DSE III: CLASSICAL MECHANICS 

(Credits: Theory-04) Theory: 60 Lectures

 Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type:

 4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6) 

Lagrangian :

 Generalised coordinates and velocities, Constraints, principle of virtual work   Calculus  of  variation,  Lagrange’s  equation, Applications to simple systems such as coupled oscillators. Cyclic  coordinates,  symmetries  and  conservation  laws.  Advantages  of  Lagrangian:  electromechanical Analogies. 

 Hamiltonian:

 Canonical momenta & Hamiltonian. Hamilton's equations of motion. Principle of least action. Applications: Hamiltonian for a harmonic oscillator, compound pendulum. Canonical  transformation, Poisson Brackets,  Hamilton‐Jacobi theory, solution of harmonic oscillator using  Hamilton‐Jacobi theory. 

 Motion under central force:

 two body problem,  reduction  to  the  equivalent  one  body  problem, Differential equation for the orbit, Condition for stable circular orbit , keplar’s law, center of mass and lab frame of reference, Rutherford scattering. Rigid body dynamics: moment of inertia and product of inertia, rotating top, precession and nutation,  Euler angles

 Rotating frame of reference: 

rotating frame of reference, centrifugal force, corlisis force and its effects. 

Reference Books:

 1. Intoduction to Classical mechanics, Nikhil Ranjan Roy, 2016, Vikash Pub House Pvt. Ltd. 

2. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002,Pearson Education.

 3. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon. 

4. The Classical Theory of Fields, L.D Landau, E.M Lifshitz, 4th Edn., 2003, Elsevier. 

5. Introduction to Electrodynamics, D.J. Griffiths, 2012, Pearson Education. 

6. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.

 PHYSICS LAB- LAB DSE III (2 Credits) FM: 25 

1. To determine the acceleration due to gravity by object drop method 

2. To determine the acceleration due to gravity by Simple Pendulum 

3. To determine the acceleration due to gravity with the help of Compound Pendulum 

4. To determine the radius of gyration and moment of inertia of a Compound Pendulum about its centre of gravity

 5. Determination of the moment of inertia of given body using inertia table. 

6. Determination of the moment of inertia of given body using inertia table using lamp and scale arrangement. 

7. Prove the perpendicular axis theorem of moment of inertia using inertia table 

8. Study two normal modes of Coupled Oscillator and record the oscillations to determine the time period for both the modes. 

9. Record the oscillations for Resonance Mode. To determine the Coupled Time Period and Beat Time Period of the oscillation also compare the experimental values of time period with calculated values?

 10. To determine the Spring Constant with the help of Coupled Oscillator 

 PHYSICS-DSE IV: DIGITAL SYSTEMS AND APPLICATIONS 

(Credits: Theory-04 ) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type: 

4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6) 

Digital Circuits: 

Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates. NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. 

Boolean algebra: 

De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. 

Data processing circuits: 

Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

 Arithmetic Circuits: 

Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders, 4-bit binary Adder.

 Sequential Circuits: 

SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-Flop. 

Timers:

 IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. 

Shift registers: 

Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-inParallel-out Shift Registers (only up to 4 bits). 

Counters (4 bits): 

Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. 

Reference Books: 

1. Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw 

2. Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.

 3. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill. 

4. Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning 

5. Logic circuit design, Shimon P. Vingron, 2012, Springer. 

6. Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning. 

7. Digital Electronics, Floyd. 

8. Digital Computer Electronics, Malvino 

PHYSICS LAB- LAB DSE IV (2 Credits) FM: 25 

1. To design a switch (NOT gate) using a transistor. 

2. To verify and design AND, OR, NOT and XOR gates using NAND gates. 

3. To design a combinational logic system for a specified Truth Table. 

4. To convert a Boolean expression into logic circuit and design it using logic gate ICs. 

5. To minimize a given logic circuit. 

6. Half Adder, Full Adder and 4-bit binary Adder. 

7. Half Adder and Full Adder Truth table verification using I.C.

 8. . To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.

 9. To design an astable multivibrator of given specifications using 555 Timer. 

10. To design a monostable multivibrator of given specifications using 555 Timer. 

 PHYSICS-DSE V: EXPERIMENTAL TECHNIQUES 

(Credits: Theory-04) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type: 

4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6) 

Measurements: 

Accuracy and precision. Significant figures. Error and uncertainty analysis. Types of errors: Gross error, systematic error, random error. Statistical analysis of data (Arithmetic mean, deviation from mean, average deviation, standard deviation, chi-square) and curve fitting. Guassian distribution.

 Signals and Systems:

 Periodic and aperiodic signals. Impulse response, transfer function and frequency response of first and second order systems. Fluctuations and Noise in measurement system. S/N ratio and Noise figure. Noise in frequency domain. Sources of Noise: Inherent fluctuations, Thermal noise, Shot noise, 1/f noise 

Shielding and Grounding: 

Methods of safety grounding. Energy coupling. Grounding. Shielding: Electrostatic shielding. Electromagnetic Interference. 

Transducers & industrial instrumentation (working principle, efficiency, applications):

 Static and dynamic characteristics of measurement Systems. Generalized performance of systems, Zero order first order, second order and higher order systems. Electrical, Thermal and Mechanical systems. Calibration. Transducers and sensors. Characteristics of Transducers. Transducers as electrical element and their signal conditioning. Temperature transducers: RTD, Thermistor, Thermocouples, Semiconductor type temperature sensors (AD590, LM35, LM75). Sinear Position transducer: Strain gauge, Linear variable differential transformer (LVDT), Capacitance change transducers. Radiation Sensors: Principle of Gas filled detector, ionization chamber, scintillation detector.

 Digital Multimeter: 

Comparison of analog and digital instruments. Block diagram of digital multimeter, principle of measurement of I, V, C. Accuracy and resolution of measurement. 

 Vacuum Systems:

 Characteristics of vacuum: Gas law, Mean free path. Application of vacuum. Vacuum system- Chamber, Mechanical pumps, Diffusion pump & Turbo Modular pump, Pumping speed, Pressure gauges (Pirani, Penning, ionization). 

Reference Books: 

• Measurement, Instrumentation and Experiment Design in Physics and Engineering, M. Sayer and A. Mansingh, PHI Learning Pvt. Ltd. 

• Experimental Methods for Engineers, J.P. Holman, McGraw Hill

 • Introduction to Measurements and Instrumentation, A.K. Ghosh, 3rd Edition, PHI Learning Pvt. Ltd. 

• Transducers and Instrumentation, D.V.S. Murty, 2nd Edition, PHI Learning Pvt. Ltd. 

• Instrumentation Devices and Systems, C.S. Rangan, G.R. Sarma, V.S.V. Mani, Tata McGraw Hill 

• Principles of Electronic Instrumentation, D. Patranabis, PHI Learning Pvt. Ltd. 

• Electronic circuits: Handbook of design & applications, U.Tietze, Ch.Schenk, Springer 

 PHYSICS LAB- LAB DSE V (2 Credits) FM: 25 

1. Determine output characteristics of a LVDT & measure displacement using LVDT 

2. Measurement of Strain using Strain Gauge.

 3. Measurement of level using capacitive transducer. 

4. To study the characteristics of a Thermostat and determine its parameters. 

5. Study of distance measurement using ultrasonic transducer. 

6. Calibrate Semiconductor type temperature sensor (AD590, LM35, or LM75) 

7. Comparison of pickup of noise in cables of different types (co-axial, single shielded, double shielded, without shielding) of 2m length, understanding of importance of grounding using function generator of mV level & an oscilloscope. 

8. To design and study the Sample and Hold Circuit. 

9. Design and analyze the Clippers and Clampers circuits using junction diode 

10. To plot the frequency response of a microphone. 

11. To measure Q of a coil and influence of frequency, using a Q-meter. 

PHYSICS-DSE VI: NANO SCIENCE & TECHNOLOGY

 (Credits: Theory-04) Theory: 60 Lectures

 Mid Semester: 15 End Semester: 60 Full Marks: 75 

Short Answer Type: 

4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6)

 NANOSCALE SYSTEMS: 

Length, energy, and time scales ‐ Quantum confinement of electrons in  semiconductor nanostructures: Quantum confinement in 3D, 2D, 1D and zero dimensional structures ‐ Size effect and properties of nanostructures‐ Landauer‐Buttiker formalism for conduction in confined  geometries ‐ Top down and Bottom up approach.  

 QUANTUM DOTS:

 Excitons and excitonic Bohr radius – difference between nanoparticles and quantum  dots ‐ Preparation through colloidal methods ‐ Epitaxial methods‐ MOCVD and MBE growth of quantum  dots ‐ current‐voltage characteristics ‐ magneto tunneling measurements ‐ spectroscopy of Quantum  Dots: Absorption and emission spectra ‐ photo luminescence spectrum ‐ optical spectroscopy ‐ linear  and nonlinear optical spectroscopy. 

 SYNTHESIS OF NANOSTRUCTURE MATERIALS: 

Gas phase condensation – Vacuum deposition ‐Physical  vapor deposition (PVD) ‐ chemical vapor deposition (CVD) – laser ablationSol‐Gel‐ Ball milling –Electro  deposition‐ electroless deposition – spray pyrolysis – plasma based synthesis process (PSP) ‐  hydrothermal synthesis.  

 CHARACTERIZATION: 

Principle and working of Atomic Force Microscopy (AFM) and Scanning tunneling  microscopy (STM) ‐ near‐field Scanning Optical Microscopy – Principle of Transmission Electron  Microscopy (TEM) – applications to nanostructures – nanomechanical characterization –  nanoindentation  

 NANOTECHNOLOGY APPLICATIONS:

 Applications of nanoparticles, quantum dots, nanotubes and  nanowires for nanodevice fabrication – Single electron transistors, coulomb blockade effects in ultra‐ small metallic tunnel junctions ‐ nanoparticles based solar cells and quantum dots based white LEDs –  CNT based transistors.  

 Text Books :  

 1. Hand book of Nanoscience, Engineering and Technology (The Electrical Engineering handbook  series), Kluwer Publishers, 2002  

 2. “Sol‐Gel Science”, C.J. Brinker and G.W. Scherrer, Academic Press, Boston (1994).   

3. Nanoscale characterization of surfaces & interfaces, N John Dinardo, Weinheim Cambridge:  Wiley‐VCH, 2nd ed., 2000.   

4. “Nanotechnology” G. Timp. Editor, AIP press, Springer‐Verlag, New York, 1999  

 5. “Nanostructured materials and nanotechnology’’, Concise Edition, Editor:‐Hari Singh Nalwa;  Academic Press, USA (2002).   

   PHYSICS LAB- LAB DSE VI (2 Credits) FM: 25 

1. Synthesis of at least two different sizes of Nickel Oxide/ Copper Oxide/ Zinc Oxide Nano Particles Using Sol-Gel Method 

2. Polymer synthesis by suspension method / emulsion method 

3. B-H loop of nanomaterials. 

4. Magnetoresistance of thin films and nanocomposite, I-V characteristics and transient response. 

5. Particle size determination by X-ray diffraction (XRD) and XRD analysis of the given XRD spectra 

6. Determination of the particle size of the given materials using He-Ne LASER. 

7. Selective area electron diffraction: Software based structural analysis based on TEM based experimental data from published literature. (Note: Later experiment may be performed in the lab based on availability of TEM facility).

 8. Surface area and pore volume measurements of nanoparticles (a standard sample and a new sample (if available)).

 9. Spectroscopic characterization of metallic, semiconducting and insulating nanoparticles.

 PHYSICS-DSE VII: MODERN OPTICS 

(Credits: Theory-04) Theory: 60 Lectures 

Mid Semester: 15 End Semester: 60 Full Marks: 75

 Short Answer Type: 

4 Marks (3 out of 5) & Long Answer Type: 12 Marks (4 out of 6) 

LASER:

 Elementary idea of spontaneous and induced emission. Life time of excited states (metastable states). Threshold condition for laser oscillation. Rate equations in two and three level system. Actual laser systems: He-Ne laser, Ruby laser. Properties and application of laser radiation. 

FIBRE OPTICS: 

principle of light guidance in optical waveguides, Numerical aperture, fibre types. Electromagnetic analysis of simple optical waveguide: Basic waveguide equation, propagation mode of symmetric step index planar waveguide, TE and TM modes of symmetric step index planar waveguide, mode cut-off condition, mode theory for optical fibre waveguide, scalar wave-equation and modes of fibre, modal analysis for step index fibre. Pulse propagation in non-dispersive and dispersive medium, Pulse broadening and chirping, Group and phase velocity, Intermodal and intramodal dispersion, Group velocity (material and waveguide) dispersion, Fiber bandwidth. 

Holography: 

Basic Principle of Holography, Construction and reconstruction of Image on hologram and applications of holography.

 Text Books :

   PHYSICS LAB- LAB DSE VII (2 Credits) FM: 25 

1. Experiments on Single mode optical fibre.

 2. Experiments on multi mode optical fibre. 

3. Lasers : Study of Laser Beam Parameters. 

4. Edser and Butler fringes - Thickness of air film.

 5. Study on Mach–Zehnder interferometer 

6. To determine the divergence of LASER beam 

7. To Experimentally Verify the Sampling Theorem. 

8. Study on losses in fusion based splices in optical fiber 

9. Measuring the end separation, axial misalignment and angular misalignment loss optical fiber. 

10. Study on Spectral analysis of optical fiber using optical spectrum analyser.

 11. Study on Nd-YAG LASER.

 PHYSICS-DSE8: DISSERTATION 

(Credits: Theory-06)

 Every student shall undertake one project dissertation approved by the concerned subject teacher of the Department/College of the department. The progress of the project dissertation shall be monitored, at regular intervals, by the faculty members. 

  SKILL ENHANCEMENT COURSES

 SEC-1: ELECTRICAL CIRCUIT NETWORK SKILLS

 (Credits: 2-0-0) 

Basic Electricity Principles: 

Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter.

 Understanding Electrical Circuits:

 Main electric circuit elements and their combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single-phase and three-phase alternating current sources. Rules to analyze AC sourced electrical circuits. Real, imaginary and complex power components of AC source. Power factor. Saving energy and money. 

Generators and Transformers: 

DC Power sources. AC/DC generators. Inductance, capacitance, and impedance. Operation of transformers. 

Electric Motors:

 Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. 

Electrical Protection: 

Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device)

 Electrical Wiring: 

Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. 

Reference Books: 

• A text book in Electrical Technology - B L Theraja - S Chand & Co. 

• A text book of Electrical Technology - A K Theraja

 • Performance and design of AC machines - M G Say ELBS Edn.

SEC-2: BASIC INSTRUMENTATION SKILLS 

(Credits: 1-0-1)

 Basic of Measurement: 

Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.            (4 Lectures) 

Electronic Voltmeter: 

Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.                      (4 Lectures)

Cathode Ray Oscilloscope:

 Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.        (10 Lectures) 

Signal Generators and Analysis Instruments:

 Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis. (4 Lectures) 

Digital Instruments: 

Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter. (4 Lectures) 

Digital Multimeter:

 Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time- base stability, accuracy and resolution. (4 Lectures)

 The test of lab skills will be of the following test items: 

1. Use of an oscilloscope. 

2. CRO as a versatile measuring device. 

3. Circuit tracing of Laboratory electronic equipment, 

4. Use of Digital multimeter/VTVM for measuring voltages 7. Study the layout of receiver circuit. 8. Trouble shooting a circuit 9. Balancing of bridges Laboratory Exercises: 1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance. 2. To observe the limitations of a multimeter for measuring high frequency voltage and currents. 35  3. To measure Q of a coil and its dependence on frequency, using a Q- meter. 4. Measurement of voltage, frequency, time period and phase angle using CRO. 

6. Measurement of rise, fall and delay times using a CRO. 

Open Ended Experiments: 

1. Using a Dual Trace Oscilloscope 

2. Converting the range of a given measuring instrument (voltmeter, ammeter) 

Reference Books: 

• A text book in Electrical Technology - B L Theraja - S Chand and Co.

 • Performance and design of AC machines - M G Say ELBS Edn.

 • Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill. 

• Logic circuit design, Shimon P. Vingron, 2012, Springer. 

• Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning. 

• Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill

 • Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer

 • Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

 SEC 3: RENEWABLE ENERGY AND ENERGY HARVESTING 

(Credits: 1-0-1)

 Fossil fuels and Alternate Sources of energy: 

Fossil fuels and Nuclear Energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. 

Solar energy: 

Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. 

Wind Energy harvesting: 

Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies. 

Ocean Energy: 

Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.

 Geothermal Energy: 

Geothermal Resources, Geothermal Technologies.

 Hydro Energy: 

Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

 Piezoelectric Energy harvesting: 

Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications, Human power

 Demonstrations and Experiments

 1. Demonstration of Training modules on Solar energy, wind energy, etc. 

2. Conversion of vibration to voltage using piezoelectric materials 

3. Conversion of thermal energy into voltage using thermoelectric modules.

 Reference Books: 

   ➫ Non-conventional energy sources - G.D Rai - Khanna Publishers, New Delhi 

➫ Solar energy - M P Agarwal - S Chand and Co. Ltd. 

➫ Solar energy - Suhas P Sukhative Tata McGraw - Hill Publishing Company Ltd. 

   ➫ Godfrey Boyle, “Renewable Energy, Power for a sustainable future”, 2004, Oxford University                 Press, in association with The Open University. 

➫ Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook, 2009

   ➫ J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA). 

 SEC 4: APPLIED OPTICS 

(Credits: 0-0-2)

 Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections. 

(i) Sources and Detectors : 

Lasers, Spontaneous and stimulated emissions, Theory of laser action, Einstein’s coefficients, Light amplification, Characterization of laser beam, He-Ne laser, Semiconductor lasers. Experiments on Lasers: a. Determination of the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser. b. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-Ne or solid state laser. c. To find the polarization angle of laser light using polarizer and analyzer d. Thermal expansion of quartz using laser Experiments on Semiconductor

 (ii) Fourier Optics : 

Concept of Spatial frequency filtering, Fourier transforming property of a thin lens Experiments on Fourier Optics: a. Fourier optic and image processing 1. Optical image addition/subtraction 2. Optical image differentiation 3. Fourier optical filtering 4. Construction of an optical 4f system b. Fourier Transform Spectroscopy Fourier Transform Spectroscopy (FTS) is a powerful method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry and forensic science. Experiment: To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

 (iii) Holography: 

Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition Experiments on Holography and interferometry: 1. Recording and reconstructing holograms 2. Constructing a Michelson interferometer or a Fabry Perot interferometer 3. Measuring the refractive index of air 4. Constructing a Sagnac interferometer 5. Constructing a Mach-Zehnder interferometer 6. White light Hologram 

(iv) Photonics: Fibre Optics : 

Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating Experiments on Photonics: Fibre Optics a. To measure the numerical aperture of an optical fibre b. To study the variation of the bending loss in a multimode fibre c. To determine the mode field diameter of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern d. To measure the near field intensity profile of a fibre and study its refractive index profile e. To determine the power loss at a splice between two multimode fibre 

Reference Books: 

➫ Fundamental of optics, F. A. Jenkins & H. E. White, 1981, Tata McGraw hill. 

➫ LASERS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, 2010, Tata McGraw Hill.  Fibre optics through experiments,M.R.Shenoy, S.K.Khijwania, et.al. 2009, Viva Books. 

➫ Nonlinear Optics, Robert W. Boyd, (Chapter-I), 2008, Elsevier..  Optics, Karl Dieter Moller, Learning by computing with model examples, 2007, Springer. 

➫ Optical Systems and Processes, Joseph Shamir, 2009, PHI Learning Pvt. Ltd. 

➫ Optoelectronic Devices and Systems, S.C. Gupta, 2005, PHI Learning Pvt. Ltd. 

➫ Optical Physics, A.Lipson, S.G.Lipson, H.Lipson, 4th Edn., 1996, Cambridge Univ. Press 

 SEC 5: Computers and C Programming 

(Credits: 1-0-1) 

Introduction: 

Fundamental of computers, components of a computer system: hardware, software. Introduction to operating system, parts of windows, files and folders. Importance of computers in Physics, paradigm for solving physicsproblems for solution. Algorithm: Definition, properties and development. Flowchart: Concept of flowchart,symbols, guidelines, types.

 C Programming Language:

 Introduction, importance of C, characters set, tokens, keywords, identifier,constants, basic data types, variables: declaration & assigning values. Pre-processor directives, structure of C program. Operators: arithmetic operators, relational operators, logical operators, assignment operators, increment and decrementoperators, conditional operators, bit wise operators, expressions and evaluation of expressions, type cast operator, precedence of operators. Arrays: concepts, declaration, accessing elements,storing elements, two-dimensional and multi-dimensional arrays. InputOutput statements and library functions(math and string related functions). 

Decision making, branching & looping: 

Decision making, branching and looping: if, if-else, else-if, switchstatements, break, for loop, while loop and do loop. Functions: Defining functions, function arguments andpassing, returning values from functions. 

Structures: 

Definition and declaring a structure variables, accessing structure members, initializing a structure,copying and comparing structure variables, array of structures, arrays within structures, structures withinstructures, structures and functions. Pointers. 

Suggested Books:

 1. YashavantKanetkar, Let Us C , BPB Publications 

2. Programming in ANSI C, Balagurusamy, TMH. 

3. Byron S Gottfried, Programming with C ,Schaum Series. 

4. Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, Prentice Hall. 

5. YashavantKanetkar, Pointers in C, BPB Publications C Programming Lab 1. Exercises on syntax on usage of C language. 2. Usage of Windows (GUI) commands and applications, familiarity with DOS commands andworking in an editor to write sources codes in C. 3. Generate the fibonacci series up to the given range N and also print the number of elements in theseries. 4. To print out all natural even/ odd numbers between given limits. 5. To find maximum, minimum and range of a given set of numbers.

 6. Calculating Euler number using exp(x) series evaluated at x=1 

7. Calculate factorial of a given number and in a range. 

8. Find all the roots of a quadratic equation for non – zero coefficients A, B and C otherwise report error.

 9. Calculate the value of sin (x) and cos (x) using the series. Also print sin (x) and cos (x) value using library function. 

10. Generate and print prime numbers up to an integer N. 

11. Find the sum & difference of two matrices of order P x Q and R x S. 

12. Find the product of two matrices of order P x Q and R x S. 

13. Find the transpose of given P x Q matrix. 

14. Computations of various matrix operations.


Next::      ENGLISH  SYLLABUS 

Post a Comment